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ABSTRACT

The periodic orbits around the more massive component in
the restricted three-body problem have been taken as represent-
ing quantitatively the rotating gaseous rings discovered through
their emission lines in many eclipsing binaries., The periodic
orbits have been obtained first through a series expansion and
furthér improved by the successive approximation., Thus, a
theoretical relation, in a tabulated form, has been obtained
between the velocity of the emission ring and its distance from
the more massive component for each of six values of the mass
ratio of the two component stars,

By using this theoretical relation, the masses of two com~
ponents in the binary system may be determined by observing the

emission ring during eclipse. As an illustration the masses of

-the two components of RY Gem have been found.

Applying the same idea of the perlodic orbits, we have also
examined the nature of non~-synchronous rotation in U Cep and RZ
Sct,

I. INTERPRETATION OF THE ROTATING RINGS
IN TERMS OF PERIODIC ORBITS

Since the discovery by Joy (1942, 1947) of the gaseous
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emission ring around the primary éomponent in RW Tau, it has been
found that ring occurrence is a common phenomenon in binaries of
the Algol type (e.g., Sahade 1960), Vvhile its formation in such
binaries can only be qualitatively understood (Huang 1957) because
of the mathematical difficulty intrinsic to such a problem, its
behavior, once it has been already formed, can be represented in
a quantitative manner,

The simplest representation of the gaseous ring in the binary
system is by the classical two-body problem. The particles in
the ring may be treated as moving in the gravitational field of
the primary component alone, This is obviously an over-simplifica-
tion because of the neglect of the secondary component. On the
other hand, a realistic representation of this problem from the
point of view of hydrodynamic flow turns out to be very difficult.
The actual attempts to solve the problem in this way have been
confined only to the case where the pressure is neglected. 1In
other words the hydrodynamic approach so far has taken into con-
sideration only collisions. Even with this simplification, the
significance of the result remains doubtful. (Prendergast 1960,
Huang 1965). Hereby we suggest a compromise method of mathematical
representation which, though not as general as a hydrodynamic
solution, takes the effect of both components into consideration,
As we shall see, this method will not be invalidated by the
collisions of particles as long as the pressure term can be
neglected, Therefore it is equivalent to the hydrodynamic
approach without the pressure term,

In order to see this point let us consider the restricted

three-body problem. The calculation of the paths of a test
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particle in a binary system under different initial conditions
by the aid of the reatricted three-body problem has been performed
previously by several investigators (Gould 1959, Kopal 1959).
There are indications that particles ejected from the less massive
component have the tendency to circle the more massive component
if the mass ratio of the two component stars and the initial con-
ditions are favorable. However the present method differs from
the previous calculations by pointing out the function of periodic
orbits that exist for the third body around each component of the
system, These periodic

orbits are very nearly circular and
we may take the gaseous rings as following
their paths. Such a view is, of course, not new, It has
been pq}nted out before that the restricted three-body problem
bearsa]xfziilogy to the steady flow of an incompressible fluid
in which certain streamlines correspoad to periodic orbits (e.g.
Szebehely 1961). According to this point of view the necessary
condition for the existence of gaseous rings is that the periodic
orbits are stable., If they are stable, a slight change in its
velocity at any point will not disturb the particle far from the
periodic one. In other words, in the neighborhood of each stable
orbit there exist an infinite number of nearly periodic orbits,
none of which deviates drastically from the periodic one. Ve may
then visualize the motion of individual particles in the rotating
gaseous rinz as each following one of these nearly periodic
orbits., As a result of collisions among themselves, each particle
shifts from one nearly periodic orbit to another. Taken as a

whole the rotating ring keeps its stationary appearance at least
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for a short time scale, say for a period. Here we can see how
‘the present method includes the collisions of particles into
consideration. On the other hand, if the periodic orbit is
unétable, the ring'can never be maintained because particles
will depart from the periodic solution rapidly as soon as they
are slightly deviated from the exact periodic solution.

Such a view of the rotating gaseous ring in terms of the
stability of periodic orbits in the restricted three-body
problem has its advantage in two respects, In the first place,
the necessary condition for the ring formation can be mathe-
matically treated because the problem of stability of the
periodic orbit in the restricted three-body problem has been
formulated., The early method introduced by Hill (1886) and
Darwin (1897) for the stability criterion is tedious because it
involves the calculation ot an infiﬁite matrix. However, recent-
ly simpler numerical methods (Huang 1963, veprit and Price 1965,
Henon 1965) have been devised, The method suggested by Huang and
that by Deprit and Price are identical. For periocdic orbits in
the plane of symmetry the stability criterion is reduced to the
investigation of a fourth order matrix, The second advantage
which has an immediate application to empirical data is that
the rotational velocities of the gaseous ring may now be real-
istically evaluated, since the periodic orbits in the restricted
three-body problem can be determined either analytically as
shown in the folléwing section or by the method of successive

approximations,

%
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II. A SERIE3S SOLUTION FOR PLRIODIC ORBITS

A series solution for the periodic orbits may be obtained
by the usual technique., Let us take the total mass of the two
finite bodies as the unit of mass, thelr separation the unit
of length and P PTT the unit of time where F) represents the
orbital period of the two finite bodies. If we choose the pole
to be located at the more massive body, the equation of motion
of the third (infinitesimal) body in the restricted three-body
problem in the orbital plane may be written 1in the rotating

polar coordinate system as
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where ( [l , fJ ) denotes the polar coordinates of the third
body, and f? and f%_respectively the distances of the infini-
tesimal body from the two finite bodies,(Obviously /255/3,)'
The polar%xis which rotates with the two finite bodies is
directed from the more massive body (of mass 17/1/ ) to the
less massive body (of mass /U, ).

When/ﬂL equals zero, it becomes a two-body problem. Thus,
81l circles with their center at the origin are the periodic
sBolutions of the problem. We can now argue that if /LL is
small, the periodic orbit deviates only slightly from the cir-
cular one. The deviation obviously depends upon./LLv. ?herefore,

if the periodic solutions exist, they may be represented by

A =7t i (t) +/¢2”a(f) L 3

]

6

where ‘ﬂ; and )\ are to be determined and are independent of

A+ pG ) pb) o

time (Huang 1964). Substitution of equations (3) and (4) into
equations (1) and (2) gives equations of perturbation in dif-
ferent orders of approximation.

0
The zeroth order (/u.) approximation gives

()\+l)z.: /"//L.____

e :
0 (5)

which is simply Kepler's third law in the problem of two

bodies, namely the 1 ~//Lf component and the third, infinitesi-
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mal body. The first tern includes A+ | instead of A because the
equations are expressed in the rotating coordinate system.

Thus, /K_ may have positive or negative values, corresponding

respectively to the direct and retrograde motion of the third
body.

The first order (/AL' ) approximation yields
2
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if the terms involving third and higher orders oflﬂo are

neglected.

With the same degree of approximation as regards to the

2
series in ﬂo , the second order (//L ) equations are:
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In a similar way, equations of perturbation in higher orders

can be derived in terms of the solutions of the equations of

lower orders.

The solutions of equations (6) and (7) can be easily

found:
n,
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where 7€; and ,1;’ are defined by
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It should be noted that /\ (or equivalently, /@ ) is

an integration constant in the unperturbed case, It defines

as well as labels the circular orbits, each of which is used

as the reference orbit for the perturbed calculation. In other
words, the solutions for different orders of perturbation re-
present small variations from the circular orbit which is fixed
by assigning a definite value to ,K in each case. This is
the basic assumption involved in the present method. It then
becomes obvious that the presence of the I%/ term in the solu-
tion of the perturbed equation is incompatible with this as-
sunption and consequently I? nust vanish, because ]3'f~ ’
which increases with 'if , cannot be kept small indefinitely.
Hence, although the four arbitrary constants 1n the iolutlon

of the differential equations (6)-(7) are /ﬁ /42 , 13 ’ v

/ arbitrary !
and Eg , the four constants in the solutlon of equations

"~
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The previous argument may be stated in another way. Let
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us introduce /\ defined by
/
M=+ DL

, /l (13)
Clearly ,& denotes the mean angular velocity in the per-
turbed case and therefore is an integration constant fer the
solution of equations (1)~-(2). But we can combine ,4 and
Iz;ayﬂqo to form a single constant /A according to equa-
tions (13) leaving in ;otal four integration constants ,X

/
Al o+ A, s and B, 1in the final solution.

!

In general, if higher orders of /AL— are considered, the

integration constants will be A\ , /}I . /42_, and BZ_
defined by

A =Apehpiee  den

because, as we can see easily, the complementary functions in
different orders of approximation are of the same form. Hovever, the
problem of convergence of the series has not been investigated,

The general solution does not give the periodic orbits
because there are two fundamental periods, 2 71'/( /\ 'f' 1)
and 27C/) 4 with several harmonics of the latter. However,
since the existence of some periodic solutions has been proved,
these periodic orbits must correspond to the particular integral
obtained from equations (10) and (11) by setting /4/'= /L/==E%/
= B( = 0., fThen the solutions contain only terms with period
27%(& of the fundamental oscillation, and shorter periods

corresponding to its harmonics. Thus, the periodic orbits

around the 1 —/AL component may be given, to the first order




- 10 -
of /LL and the second order of [(0 , by

/lzﬂo'f‘/'LH‘ a/Mc(, 9:/\1‘4’/&9‘ (1)
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It follows from the solution given b‘y equations (10) and
(11) that, in general, a periodic solution can be obtained for
any given value of A only by setting A‘ A). , and B
equal to zero. Thus, one periodic orbit is assoc:.ated with
one value of the period. However, if /\ , and consequently
)\/(/\ + 1) are ratios of two integers, arbitrary (small)
values for the other three integration constants may all lead
to periodic orbits. These commeasurable orbits are perhaps
unstable, For example, the coefficients defined by equations
(12) diverge when A =1, /\_ =+ %, etc. This is credible
because both the asteroids and Saturn's rings show gaps due
to commeasurability. However this divergence could be introduced
by the particular way of expansion of the solution. If so,
this would indicate that the present method cannot be applied

to the commeasurable periodic orbits.
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Yhen the solutions of fl‘ and [}, 0‘ given by equations
(15) and (16) are substituted into the secoad order equations
(8) and (9) and when the resulting equations are simplified,

we obtain:

Az.
dtﬂl a(/\ﬂ)hj’t 3(/\+I)/z F f’cm/lf”)
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These equations have the same form as equations (6) and (7),
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except for more terms on the righthand side. Therefore, the
solution can be derived in the sahe manner as in the case of
the first order equations, although finding the explicit
expressions of the solutions is mucbhb more tedious because of

the lengthy equations that define 'Bn and Xn/.

III. RADIUS AND VELOCITY RELATION
Under the approximation by the two-body problem, the
velocity of gaseous particles revolving around the more
massive component is related to the radius of the circular

ring by the simple relation
3
v - (L)
S on

in the adopted unit system. When the effect of the /AL,

(19)

component is considered, the periodic orbit is not exactly
circular (although it is nearly so) and the speed of the par-
ticle moving in any periodic orbit is no longer constant.
However, observationally we observe the radius and the velo-
city of the rotating gaseous ring only at the time of princi-
pal eclipse. Therefore, we can find a relation between the
distance from the central star (i.e., /. ) and the velocity
WV~ at the time of principal eclipse. Obviously the relation
involves /tbfas a parameter.

we have first applied the result of the previous section
to obtain the periodic orbits around the 1 —/LL component.

For large orbits, a method of successive approximation
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(Hueng and Wade 1963) has to be use%Ato improve the analytical
result which is only approximate. Thus six series of periodic
orbits around the 1 -/pc. component have been derived in the
plane of symmetry. In - | ‘Table 1 we have
expressed thgrinitial conditions in the rectangular coordinate
(x , Z’ ) system defined by x =/l coL § —-/C(/ 3:/[/1«‘;012 i.e.,
the origin of the ( ~ , }7’ ) system is at the center of mass
of the two finite bodies. In all cases, the initial values
of ﬁ?f and ;i. are zero. Hence, only the initial valuegof
. sand 4} are given.

Once the periodic orbits have been found, we can proceed
to determine the values of 3? and of Qa at the points
where %é = O. These values are given respectively in
the first and second columns of Table 2 again for six series
corresponding to six values of/AL, » They should represent
the radius and the velocity of the gaseous ring observed
during principal eclipse. It may be noted that there are
two points in each periodic orbit where 3}- = 0 with
both 2% and :i, in opposite signs. But the magnitudes
of 4j, and Jt calculated at these two points are iden-
tical within the accuracy of the figures given in the table.
As a comparison we list in the last column of Table 2, the
circular velocity obtained by setting /I = J/ in equation (19).

As we have pointed out before, gaseous rings are most
likely formed in binaries with //L £0.3. At the same time
binaries with/LL<( 0./ have 1little chance to have the mass

ratio accurately determined by observation. Therefore, the
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table covers the range ofl/L/ that has a practical interest.

Periodic orbits exist also around the less massive com-
ponent of a binary system. Therefore, based on this fact
alone one would expect to find some gaseous ring revolving
around the less massive component. Indeed, such is the case
of Saturn's ring if we take the Sun and Seturn as a binary
system. However, no emission rings have yet been found around
the less massive component in eclipsing binaries. This could
result from the observational selection. On the other hand,
there are some intrinsic reasons that induce us to suggest
that such a situation does not happen easily in close binaries
(Huang 1965).

As can be seen from Table 2, a difference exists between
the velocity of the gaseous ring calculated from periodic
orbits in the three-body problem and that from equation (19)
in the sense that the latter is systematically larger than
the former. This difference measures the effect of the pre-
sence of the secondary component. Thus, it increases with
JU obviously because the farther away the ring from the
primary component, the greater is the influence of the secon-
dary component. It is equally obvious that the difference
increases with‘/L. for the same value of /L .

The velocity, ) , in Table 2 from the three-body calcu-
lation represents a function of two variables ne and//i/ '
i.e., ’U’:‘U‘(/‘L)/,L). Although it cannot be written down
analytically, an interpolation formula may be easily devised

from the table. One interpolation formula may be of the
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form, say
PR 2
v =(_‘7L&) — (c°+q/«)/7, '((2_+c3/u)/1

with constants Co , C; , Cp , and (; to be determined by
the tabulated values.

IV. DETERMINATION OF THE MASS RATIO
FROM THE RADIUS-VELOCITY RELATION
Since the radius-velocity relations of the gaseous

emission ring depends upon the mass ratioo/iy of the binary
system, we may determine the mass-ratio from the observed
values of the radius and the velocity of the ring. From a
consideration of symmetry, the ring must lie in the orbital
plane of the binary system. Its inclination being known,
its velocity at the time of principal eclipse can then be
obtained simply from the Doppler shifts of the emission line,
The radius of the ring may be obtained from the time of eclipse
of the emission line in the same way that the radii of the two
component stars are determined from the duration of the prin-
cipal and secondary eclipses. Unfortunately all the previous
works on the emission line depend upon the spectrogram which
takes a long time to expose. Consequently, in no case the ra-
diué of the gaseous ring has been determined accurately. What
can be suggested for the future study is to derive a light
curve for each one of the emission lines. Perhaps with the

use of an image intensifying device, this can now be done.
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The major problem in designing this kind of instruments is

how to take into account the Doppler shift of the line such

that the measured light intensity covers no more and no less -f{aw
the entire emission line at any phase. Such an instrument

will be useful not only in the present case of the gaseous
emission ring but also for studying the surface activity of

the star in the eclipsing binary system in more or less the

same way that the spectroheliograph is useful for the study

of the solar surface,

To return to the problem of mass determination we may
recall that the velocities used in the previous calculation
and given in Tables 1 and 2 are dimensionless. Thus, the
actually observed velocity of the emission ring, |/, . at

the time of principal eclipse is related to 7> of Table 2 by
4
(M + M) .o
—— - l - /M«L
an. - [ Vﬂ/ /

aw

(20)
where j is the inclination of the orbital plane, 4 1is
the semi~-major axis of the relative orbit of the two compo-
nents with masses p4‘ and IV%L, all expressed in the c.g.s.

units. It can be easily obtained from equation (20) that

Vem |
K (21)

where f<‘ denotes the semi-amplitude of the velocity curve of

:/zi(r—zz)}éﬂr(/z//c)/

the primary component and £ the eccentricity of the binary

orbit. Equation (21) determinecs the mass ratiol/d, from the
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observable quantities lénb and /I . As a suggestion for
the practical procedure we may plot the curves ’y;“//yﬂ
versus [, for different values of /Ub given in Table 2. Then
the value of /Lb for any particular case may simply be read
off from the diagram by finding the curve of AL on vhich the
observed values, ’%’”/K[ and /Z,/ fall on.

Once /L is known, the masses of both components can be

easily derived from the mass function. Thus, as far as the

determination of stellar masses is concerned, the observation
of the gaseous ring is equivalent to the observation spectro-
scopically of the less massive component which is usually not:

the
seen outside,principal eclipse. However, since U~ is calcu-

A

lated from the restricted three-body problem, we can apply
this method for determining stellar masses only for systems
with small £ . This doeéxggan a drawback of the present
method because rotating rings are unlikely to be associated
with binaries having large ecceﬁtricities where motion of the
secondary component exerts a large disturbing effect on the
stability of the gaseous ring.

As an example, we may apply the present method to deter-
mine the masses of RY Gem which has been studied by Wyse (1934)
Gaposchkin (1946) and McKellar (1949). According to McKellar,
%m = %oo 'ﬁm /Lec, Kl = 2’7/ 'EM«{/A-QC} f’]{ﬁ Pria. 3d
/b,iowxo‘z;nl — 3_0/8')'5 lo and the linear size
of the ring is three times the radius of the primary component.

The radius of the primary component has not been exactly deter-

mined from photometric data. Wyse gave a solution (that con-




-17 - ‘
siders limb darkening) of 0.108 for the primary but Gaposchkin
gave the same quantity two values --0.086 from photographic
measures and 0,079 -- from visual measures. As a rough esti-
mate we take the mean of these three values. This would give
U = .273 for the gaseous ring. With Ti:’"*/KI = 7.38,

we can easily find from the fanily of '1Z;n/4K} versus J_
curves that /AL, is about equal to 0.195. It then follows from
the mass function that M| =JMpend M, = 0.5My if [ -85

as determined from the light curve used. As a comparison

0

McKellar gives an estimate of 1.7 h%D for M|, . The results
derived here are tentative since /. is not accurately measured
from the eclipse of the emission ring. Also, the stellar
absorption line may be affected to a sufficient extent by the
gaseous stream. This makes the semi-amplitude ha of the
velocity curve somewhat uncertain. However, these are all
observational uncertainties and dovnot reflect any flaw on

the part of the basic principle of such a determination of

stellar mass.

V. NON-SYNCHRONIZATION OF U CEP AND RZ SCT

It has been found observationally that axial rotation of
close binary components are in general synchronized to their
orbital motion. This result is indeed expected from theoreti-
cal considerations, However, there are a few close binaries
where synchronization is not observed. In some cases the star
rotates slower, and in other cases it rotates faster than
expected from synchronism. Non-synchronization of the latter

cases has been found in U Cep and RZ Sct (Struve 1944, 1963).
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We have suggested that non-synchronization of U Cep and
RZ Sct is due to the transport of angular momentum to the pri-
mary component by the ejected particles from the secondary com-
ponent (Huang 1966). Two possibilities arise from this sugges-
tion. First, the ejected particles may form a rotating ring
that is so close to the primary such that we cannot observa-
tionally distinguish it from the reversing layer. Or, instead
of developing a rotating ring, the gaseous particles fall into
the atmosphere of the primary. The axial rotation of the at-
mosphere will then be accelerated by the falling particles of
large angular momentum per unit mass., In either case we will
see large rotational disturbances in the velocity curve and
obtain the result that the primary rotates faster than the
synchronized velocity.

In order to determine which one of the two possibilities
corresponds to the true nature of the event we may first obtain
the periodic orbits very close to the primary component.' The
initial conditions that lead to these periodic solutions are:

~ = - 0.49, ,? = - 1.6985 for U Cep with [t = 0.29
and X = - 0.349, ?d = «~ 1.7345 for RZ Sct with /a,= 0.119,
(In both cases ‘y = JC = 0) The periodic orbits correspond-
ing to these initial conditions have the following properties.
In the case of U Cep, the velocity magnitude, 1) , varies
from 1.65 to 1.70 and its distance, /U , to the center of the
— primary varies from 0.200 to 0.204 as compared with 0.20 for
the photometric radius of the primary. In the case of RZ Sct,

v and / range respectively between 1.71 and 1.7%, and
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between 0,230 and 0.232, while the photometric radius of the
primary is 0,23. In either case, the orbit is very nearly
circular and close to the primary's surface, Therefore, if
a gaseous ring is indeed formed close to the primary, its
rotational velocity must be given by that of the periodic orbit.
Since the computed range of rotational velocities at different
points in the orbit is narrow, and since the observational
value is not accurate, we may simply take the mean of the
computed range for the purpose of comparing it with observation,
Converted to the conventional units the rotational velocity of
the gaseous ring close to the primary of U Cep should be about
170 km/sec, while the actual value determined from the distur-
bance of the velocity curve amounts to 300 km/sec., For RZ Sct
the rotational velocity of a gaseous ring close to the primary
would be 340 km/sec, while the observed value is 200 km/sec
at most., Thus it appears that what produces rotationai distur-
bance in the velocity curve could not be due to gaseous ring
located close to the stellar surface, 1In other words the
other possibility that the falling particles drive the atmos-
phere of the primary to rapid rotation may be what actually
happens to these two binaries,

Finally it is my pleasure to thank Mr, Clarence Wade, Jr.
for carrying out the calculations connected with this paper
on the IBM 709 digital computer at Goddard Space Flight Center,
This work has been made possible through a research grant

from National Aeronautics and 3pace Administration.
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TABLE

1

INITIAL CONDITIONS THAT LEAD TO PERIODIC ORBITS

AROUND THE MORE MASSIVE COMPONENT

( 17 -i: 0 For All Cases )

?

x-i'/(b /u—z 0.1 /CL= 1/7 /LL= 1/6 /U--- 0.2 /u,= 0.25//»= Q.5
~.10 1-2.9009 |-2.8289 |-2.7882 [|-2.7315 |-2.6408 |-2.5484
-.15 1-2.3016 |{~2.2435 |-2.2106 |-2.1638 [-2.0917 |~2.0173
-.20 1-1,9255 [-1.8764 |-1.8486 |-1.8091 |-1.7484 |-1.6858
-.25 |=1.,6549 1-1.6129 [-1.5893 |-1.5557 |-1.5046 |-1.4527
-¢30 {-1.4449 |-1.4099 }(-1.3905 -1.3634 -1.3237 {-1.2870
~.35 |-1.2752 {-1.2490 {-1.2355 |-1.2183 {-1.1957 [-1.1612
-.40 [-1.1376 }-1.1257 |-1.1189 [-1.1019 [-1.0585 |-1.0020
-.45 |-1.0350 [~1.0226 |-1.0049 |-0.9733 [-0.9180 {-0.8571
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TABLE 2

VELOCI‘I‘IES, ‘U’l OF GASEOUS RINGS AT TIME OF ECLIPSE

From From ! From ~ From
| | |
1= three—body equation 1=t : three-body equatlon

problem (19)

!

i problem  (19)

M = 0.1 o= 0.2
+10006  2.898 . 2.999 & .10022 2724  2.825
.15028  2.295 2,447 gf 15063  2.151  2.305
20092 1.9122  2.116  .2021  1.7799 | 1.9895
2524 1.6292  1.8882 .2559  1.497%6  1.7681
+3058  1.3979  1.7155  .3152  1.2504  1.5932
. 3634 1.1897  1.5738  .3901 .9876  1.4321
4316 L9745 1.4480 4876 6951 ' 1.2809
.5329 6899 | 1.2996  .5579  .5121  1.1975

/a,= 1/7 '? //La 0.25
.10009  2.826 2.926 10017  2.635  2.7%
(15042 2,234 2,387  .15085  2.075  2.230
+20014  1.8566  2.063  .2029  1.7101  1.9227
12538 1.5744  1.8379 L2582 1.4264  1.7042
23092 1.3378  1.6649 .3226  1.1638  1.5248
3722 1.1125  1.5175 4139 8513 1.3462
4564 L8501 1.3704  .4903 6341 1.2369

Se46 | L5582  1.2321 | .5350 w5127 1.1841
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Legends
Fier, 1 Fuicedi » ’(T- (.‘) ) (_’B( ) “he functior 7;
165 ~ Puncuviongs ,,P v oand PRy ). 12 T'unction S
| 3 -
which repreosents the distribulion of projected rotational vcloc-
ities of stars if thelr cquuatoriul rotetionsl velocition follouw
the Maxwellian distributlion, is shown by the curve Jobeled by
4 pt Ny ST I}
numeral 1, The rest of the curves are cases of EP (y) which
2
9
shows the effect of the time and other factors on the distribu-
tion discussed in Section II, The numerals accompanying the
respective curves denote‘A' . Because the scale of rotational
velocities in the statistical model is not fixed, the actual
curves may be compressed or stretched along the abscissa with
a consequent change in the ordinate in order to maintain the
normalization, In conseguence of this degree of uncertainty,
the intrinsic difference among these curves is too slight and
is not expected to be dectected by observation,

Fig., 2 - Function' ¢ (y). The curves represent different
degrees of braking for the case that the rate of decrease in
the spin angular momentum of a star at any time 1s proportvional
to the square of the spin angular momentum, The labeled value,

¥,s measures the inverse of the braking strength.




